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Three-dimensional solutions of the Boltzmann equation: Heat transport at long mean free paths
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A kinetic transport model for arbitrary meshes is presented and the method is applied to heat transfer in a
rare gas between parallel plates at different temperatures. The method uses ‘‘propagating’’ rays for tracking the
transport of particles throughout the phase space in three-dimensional spatial meshes. Two collision operators
are tested with the model, a simple monoenergetic operator and the Bhatnagar-Gross-Krook~BGK! model.
Results are generated for several Knudsen numbers in the transition regime. The results of the kinetic simu-
lation, which employ the BGK operator, compare favorably with those of a finite-difference solution of the
Boltzmann equation using the BGK collision operator@T. Ohwada, Phys. Fluids8, 2153~1996!#. In addition,
the results for both collision models exhibit fair agreement with experimental data of Teagan and Springer
@Phys. Fluids.11, 497 ~1968!#.
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I. INTRODUCTION

In this paper a kinetic neutral particle transport model
long mean-free-path~LMFP! environments is discussed. Th
model permits efficient, nonstatistical~no random numbers
are used! iterative calculation of the scattering rate of pa
ticles in each cell of a phase space mesh. The use of
scattering rate formulation is implied by the Milne version
the radiation transport equation@1#. Most implementations
have been limited to rather specific applications, where t
have been shown to be very accurate and computation
expensive in terms of memory requirements@2–4#. We have
developed such an approach to examine self-consistent p
lems in long mean-free-path fluid dynamics, where force b
ance is achieved by means of momentum conservation
ing particle collisions @5,6#. We have focused on
implementing the transition probabilities in a form that a
lows the mean free path and angular distribution of the s
tered particles to vary, both in space and during the sim
tion ~a variable angular distribution being needed to all
momentum-conserving collisions!. In addition, the model
has been developed for meshes constructed of arbit
shaped elements. Most importantly, we limit the amount
information stored. The matrix of probabilities~of going
from one cell to another! is very large. IfNc is the number of
spatial cells on the mesh, then even the geometric infor
tion required to find all the probabilities of going from ea
initial cell to each final cell involvesNc

2 numbers.
As we explain in later sections, we calculate probabilit

for particles going from one cell to another, based on
probabilities of going from a set of finer mesh cells to oth
fine mesh cells@6#. The use of fine cells is necessitated
part because the particles have a variable anisotropic ang
distribution as they leave each cell. The variable angular
tribution would make a single, one time, calculation of t
large-cell to large-cell probability impossible. In the prese
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work, there areNray rays leaving each initial cell, so th
amount of geometric information that would have to
stored for use in finding probabilities becomesNc

2Nray .
Avoiding this storage problem is essential in making the
calculations viable, and is a major focus of this work. W
envisage problems whereNc is of the order of 106 andNray
is typically of order 103.

The model presented in@6# was developed for kinetic
modeling of ion implantation. The ion implantation mod
was developed to determine the three-dimensional~3D! pro-
file of ions implanted in silicon and was specifically co
structed for simple geometries using regular meshes. In
past @6#, we used minimum stored information to constru
the matrices; in this paper we find the matrix approximate
but with essentially no stored information.

In @7#, a similar transport model was implemented on
2D cylindrical mesh for the study of neutral particle transp
in a low density electron cyclotron resonance plasma. T
model was extended to be time dependent, and was dire
compared with fluid and Monte Carlo models@7#.

The LMFP transport model is applied in this paper to h
transfer, in a rare gas, between two parallel plates havin
small temperature difference between them. In the limit
the radius of the plates approaches infinity, the problem
comes one-dimensional. In 1953, Chang and Uhlenbeck@8#
applied the four-moment method to the problem. Gross
Ziering @9# have investigated the application of the four- a
eight-moment methods to the issue of heat transfer betw
parallel plates. Bassaniniet al. applied the Bhatnagar-Gross
Krook ~BGK! @10# method to the problem in 1967.

In 1968 Teagan and Springer gathered experimental
on the heat flow between two plates at different temperatu
for various Knudsen numbersKn , whereKn5l/d,l is the
mean free path, andd is a characteristic length@11#. They
compared the data and the analytic models and found f
2% up to 18% variation from experimental data. Teag
and Springer presented data for both monotonic and diato
gases, argon and nitrogen respectively. These data have
used to verify subsequent analytic and computatio
models.
©2002 The American Physical Society08-1
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A. J. CHRISTLIEB, AND W. N. G. HITCHON PHYSICAL REVIEW E65 056708
In 1971, Yen@12# numerically investigated the transpo
problem by using Nordsieck’s Monte Carlo method for t
evaluation of the Boltzmann collision integrals. Yen’s mod
included one spatial axis and two velocity axes. Yen d
cussed results for argon at an intermediate Knudsen num
and found that his results compared favorably with those
Teagan and Springer. Huang and Hwang@13# applied the
method of discrete ordinates to the BGK model of a rare
with and without internal degrees of freedom~1972!. With
the exception of one of the intermediate Knudsen numb
this approach was in good agreement with the argon and2
data of Teagan and Springer. In order to obtain good ag
ment at the intermediate Knudson number, Huang
Hwang found it necessary to substantially change the acc
modation coefficient of the wall. In 1985, Pazooki and Lo
alka @14# applied the Hanson-Morse kinetic model to t
one-dimensional problem of heat flow in a rare polyatom
gas between parallel plates, and found good agreement
the N2 data of Teagan and Springer. Their model differ
from previous models in that it included an accommodat
coefficient for both internal energy and translational ener
The data of Teagan and Springer only had a bulk accom
dation coefficient for N2. Pazooki and Loyalka determine
the separate accommodation coefficients by trial and e
The accommodation coefficients were determined once
used in the generation of all of their N2 results. In 1993,
Songet al. @15# presented a simple kinetic model for he
transfer by a rare gas in a gap. The model compared
with experimental data, including that of Teagan a
Springer. Songet al. studied heat transport in a rarefied g
between rough surfaces and smooth surfaces. The m
compared favorably with their own experimental data.
1996, Ohwada@16# compared his nonlinear Boltzmann equ
tion solver to the argon data gathered by Teagan
Springer. The nonlinear Boltzmann equation solver had
nor discrepancies with the experimental data~no worse than
other computational models!, even as the Knudsen numb
was increased to the point where nonlinear effects bec
small. The nonlinear Boltzmann equation solver predic
asymmetries in the density profile, which were not seen
the experimental data. He also found that the collision ope
tor made little difference in the solution under the conditi
of a small temperature difference between the two pla
Ohwada felt that the accommodation coefficient of the
periment might be incorrect for conditions other than fr
molecular flow. However, varying the accommodation co
ficient of the plates did not have enough of an effect on
solution from the nonlinear Boltzmann equation solver
explain the discrepancy with the experimental data.

More recently, higher-dimensional computational me
ods, aimed at predicting flows in microelectromechani
systems~MEMS!, have used the one-dimensional problem
heat transfer between parallel plates as a test bed. In 2
Boyd and Sun@17# presented a new direct simulation Mon
Carlo ~DSMC! method that incorporates a fluid model
preserve global information to reduce statistical noise
low flow velocities in a long mean-free-path environme
The model has two spatial dimensions and three velo
dimensions. Their results agreed well with those of Tea
05670
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and Springer for small Knudsen numbers and in the limit
free molecular flow. Panet al. @18# presented a ‘‘molecular
block’’ DSMC model, which reduces statistical noise b
grouping large numbers of particles into ‘‘blocks’’ while re
taining the mean free path of the individual molecules. Th
obtained reasonable results for various different gas flo
including high Knudsen number Couette flows.

The present LMFP model describes steady state trans
of particles in a complex geometry and with irregul
meshes. The 6D model uses three spatial variables and
directional variables and energy to represent velocity spa
This propagator~Green’s function! method allows large
‘‘steps,’’ which reduce numerical diffusion@19,20#. In addi-
tion, this method is nonstatistical in nature. Partly becaus
this, it can handle collisions between particles in the g
phase with greater precision than statistical~or ‘‘particle’’ !
methods. This is an advantage for processes that involve
teractions between particles—such as force or heat bala
and transfer within the gas. The LMFP model conserv
mass and energy. Momentum is conserved by the introd
tion of an angular distribution function described in@20#. We
apply the LMFP model to heat transport between para
plates and compare our results with the argon data of Tea
and Springer@11# and with numerical results of Ohwad
@16#. We employ two different collision operators, a monoe
ergetic collision operator and the BGK model.

In Sec. II the experiment of Ref.@11# is described. In Sec
III the transport model is described. In Sec. IV, results a
verification of the transport model are presented.

II. THE PHYSICAL MODEL

A. Experiment

The experiment of Teagan and Springer@11# is outlined
here. The apparatus consisted of three parallel plates,
cm in diameter. The upper and lower plates were wa
cooled aluminum disks with argon between them. T
middle plate consisted of two aluminum plates with a heat
element placed between them. The ‘‘hot’’ plate~at 368 K!
and either ‘‘cold’’ plate~at 288 K! were 0.13 cm apart for
heat transfer measurements and 2.54 cm apart for the de
profiles. Density and energy flux measurements were m
for various Knudsen numbers. The accommodation fac
~the percentage of particles that undergo a diffuse interac
with the surface! of the aluminum was experimentally dete
mined for argon at densities near the free molecular fl
regime to be 82.6%.

B. Simulation domain

Due to the symmetry of the experiment, the simulati
only includes the lower cold plate and the hot plate~see Fig.
1!. The accommodation factor was set to the experime
value.

The current form of the code is 6D, however this proble
is 3D ~one position variable and two velocity variables!.
Therefore on the vertical boundaries of the simulation d
main, the accommodation factor was set to zero so that
ticles were spectrally reflected off the side walls. This ma
8-2
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THREE-DIMENSIONAL SOLUTIONS OF THE . . . PHYSICAL REVIEW E 65 056708
the simulation symmetric in thexy plane and thereby one
dimensional. The simulations were carried out on a rect
gular domain by using meshes constructed either of trian
lar elements or rectangular elements. Figure 2 shows
example of the types of meshes employed in this work. I
equally easy to run the code on simulation domains c
structed of triangular and/or rectangular elements.

III. LONG MEAN-FREE-PATH TRANSPORT MODEL

In this work we consider rarefied gas flows, although
basic method applies at any mean free path. In what follo

FIG. 1. The simulation region. The upper plate is the hot pl
set at a temperature of 368 K and the lower plate is the cold p
set at a temperature of 288 K.

FIG. 2. Examples of the two different types of spatial mesh
that were used in the simulations.
05670
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we introduce assumptions that apply to systems where
mean free path is comparable to or greater than the sys
size.

Our approach to the transport problem is to solve
steady-state Boltzmann equation

vW •¹Wr f ~rW,vW !1
FW

m
•¹Wv f ~rW,vW !5

d f

dt U
coll ision

. ~1!

In solving Eq. ~1! we employ a propagator based metho
which we refer to as the transition probability matrix~TPM!
method. This section describes new aspects of the TPM.
start with an overview, then present descriptions of the ‘‘b
listic operator’’ and collision operator, and end with a discu
sion of the numerical approach.

A. Overview

We present a model for the transport of gases when
mean free path of the particles,l, is of the order of the
characteristic length of the systemL. We use a 3D arbitrary
spatial mesh and a 3D velocity space mesh comprisin
single energy mesh in combination with a 2D (F,Q) direc-
tional mesh. The method employs a momentum-conserv
collision operator@6,20#. Energy and particle conservatio
are strictly enforced.

To solve Eq. 1, it is only necessary to compute the co
sion rates of particles because it is possible to compute
other information from the collision rate. For example, t
densityn(c) is

n~c!5(
E

R~c,E!l~c,E!

uv~E!ug~c!
, ~2!

where n(c) is the density in cellc of the spatial mesh,
R(c,E) is the collision rate of particles in cellc at energy
E,l(c,E) is the mean free path,uv(E)u is the magnitude of
the velocity, andg(c) is the volume of cellc.

To computeR(c,E), the TPM divides particle behavio
into two distinct phases. The first phase addresses ballist
collisionless transport of particles. The second involves
collision operator. These operations can be performed e
ciently using one-step transition probability matrices. T
first transition probability matrix is used to compute th
number of particles per second that collide in cellc at energy
E8,

R~c,E8!5(
c8

R~c8,E8!Tbal~c,E8:c8,E8!, ~3!

whereR(c,E8) is the number rate of particles that collide
cell c at energyE8,R(c8,E8) is the number rate of particle
that collided in cellc8 and were redistributed with energyE8
in the previous iteration, andTbal(c,E8:c8,E8) is the prob-
ability that a particle having started in cellc8 at energyE8
will have its next collision in cellc, where the sum is over al
mesh cellsc8 at energyE8.

The second TPM is used to redistribute the particles a
a collision,

e
te

s

8-3



g

in

on

re
ng

ilit

he

te
r-
f
n
r

u

th
in

on.
l-
as
was

for
ll

-
t a
y,

The

s;
in

k

ry
ting
the
hly
er-

ent/
r of
t. A
fine
h el-

ers

A. J. CHRISTLIEB, AND W. N. G. HITCHON PHYSICAL REVIEW E65 056708
R~c,E!5(
E8

R~c,E8!Tcol~E:E8!, ~4!

whereTcol(E:E8) is the probability that a particle, havin
collided in cell c at energyE8 will be redistributed with
energyE ~in the same spatial cellc). The directional infor-
mation used in the redistribution may either be directly
corporated into the TPM,Tbal(c,E8:c8,E8), or may be
handled by assuming a form for the particle distributi
function, f (xW ,vW ), in cell c @6,20#.

In the following sections we describe how the TPMs a
set up for irregular meshes without explicitly constructi
large matrices,Tbal or Tcol .

B. Ballistic operator: Constructing R„c,E8…

This section addresses the ballistic transition probab
matrix Tbal and compares the currentTbal to earlier versions
@6#. Some of the approximations we introduce inTbal may
not be appropriate at short mean free paths.

The TPM is never explicitly constructed. Instead, t
TPM employs propagating ‘‘rays,’’r i , j , each having a range
of polar angles,

r i , j5S F i6
dF i

2
,Q j6

dQ j

2 D . ~5!

Ballistic transport is carried out on a fixed mesh construc
of elementsc8. Propagation is performed by allowing pa
ticles to move along rays fromc8 encountering other cells o
the fixed mesh in order of increasing radius. Propagatio
completed when the rays of allc8 have deposited all of thei
particles back in the simulation domain.

The number of particles originating in cellc8 at energy
E8 that have their next collision in cellc at E8 is

Nc~c,E8:c8,E8!5(
i

(
j

Nr i , j
f ~r i , j !Pi , j~c,E8!, ~6!

wherer i , j is a ray fromc8,Nc(c,E8:c8,E8) is the number of
particles that start at (c8,E8) and that collide at (c,E8), Nr i , j

is the number of particles left inr i , j at cell c, f (r i , j ) is the
fractional overlap ofr i , j with cell c, Pi , j (c,E8) is the prob-
ability that a particle that is inr i , j , and is crossing cellc at
energyE8 will undergo a collision at a distanced, the depth
of cell c. The sum in Eq.~6! is over allr i , j that overlap cell
c. Pi , j (c,E8) is given by

Pi , j~c,E8!5~12e2d/l(c,E8)!, ~7!

l(c,E8) is the mean free path in cellc at E8. d5D(c,r i , j ) is
the average distance a particle travels when passing thro
c along r i , j .

The number of particles in a ray is decreased by
amount indicated in Eq.~6!, as those particles are scattered
each cell they pass through.R(c,E8) can now be computed
by summingNc(c,E8:c8,E8) over all cellsc8 of the fixed
mesh. Particles having scattered in a cellc8, during the bal-
05670
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listic step, are placed in the rays ofc8 in such a way as to
conserve momentum, as discussed in the following secti

In the past@6#, the geometric information needed to ca
culate the probabilities ‘‘exactly’’ on a Cartesian mesh w
computed and stored in a table. The Cartesian mesh
referenced by an ordered triple of integers, (i , j ,k). Due to
the symmetry of the mesh, the geometrical information
an initial cell c8 with other final cells was the same for a
initial cells c8, so that it was only stored once forc8 at the
origin, i 5 j 5k50. Geometric information was stored ex
plicitly, so that propagation could be possible one ray a
time ~see Fig. 3!. Mesh information was stored, for each ra
based on the distance fromc8. Particles were distributed to
the mesh as the cells were encountered along the ray.
probability of a particle having a collision in cellc at energy
E8 was approximated from Eq.~7! as

Pi , j~c,E8!.
D~c,r i , j !

l~c,E8!
, ~8!

providedD(c,r i , j )!l(c,E8). D(c,r i , j ) and f (r i , j ) were de-
termined by numerical integration.

The convected scheme~CS! @21# finds probabilities accu-
rately and straightforwardly. Moving cells~MCs! are
launched from cells, moved along ray-centers for timeDt,
and colliding particles put in cells using CS overlap rule
another step of the MC taken, etc. At walls, MCs emerge
continuous sheets@21#. Striking walls, MCs are mapped bac
to give proper coverage, especially in corners~e.g., by divid-
ing the MC into many small cells!.

1. The coarse mesh

If the TPM were directly implemented on an arbitra
mesh, it would be necessary to construct the propaga
rays for each initial mesh element of the mesh. Storing
quantities necessary to construct the TPM would be hig
memory intensive. To avoid this, a fine regular mesh und
lying the arbitrary coarse mesh is introduced@21#, along with
a map between the two meshes. A fine regular mesh elem
cell is said to overlap a coarse mesh element if the cente
the fine mesh cell lies inside the coarse mesh elemen
pointer to the coarse mesh element is stored in every
regular mesh element that overlaps it. Each coarse mes

FIG. 3. Depiction of a single propagating ray as it encount
mesh elements of a regular mesh.
8-4
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THREE-DIMENSIONAL SOLUTIONS OF THE . . . PHYSICAL REVIEW E 65 056708
ement has a minimum of one fine mesh element in it. T
coarse mesh is used to cluster fine regular mesh elem
into cohesive units that share the same characteristics. C
tering of fine mesh elements effectively redefines the coa
mesh elements of the arbitrary mesh~see Fig. 4!. After col-
liding in the coarse mesh elementc ~that is, in one of the fine
mesh cells ofc), particles are redistributed~i.e., relaunched!
from the fine regular mesh elementccg closest to the cente
of gravity of the cluster of fine cells representing the coa
cell c. Note that there is oneccg perc, so that the number o
distributing nodes is still equal to the number of coarse m
elements.

Similarly, the boundary is represented by clusters of
fine regular mesh elements that lie on the boundary; th
fine mesh elements are designated bycb . The wall cell clos-
est to the center of gravity of the cluster of wall cells
designated the distributing wall cellcbcg . ~It will be impor-
tant to ensure that there is indeed a fine mesh cellccg or cbcg
with its center close to the actual center of gravity.!

The fine regular mesh introduces symmetry into the s
tem and can be referenced by an ordered triple of integ
( i , j ,k). During the ballistic move we distribute particle
from each coarse element to all other coarse elements—
scattering from each coarse element is done from a fine
ment, ccg or cbcg . The distribution fromccg to the coarse
elementsc is done by first distributing particles to each fin
mesh element. Particles placed in a fine mesh elemen
never stored in that element, but are placed directly into
coarse mesh elementc that the fine mesh overlaps. The me
free path of the particles used in calculating the numbe
particles that collide in a fine regular mesh element is
mean free pathl(c,E8) of the cluster of fine mesh elemen
representing cellc.

2. Overlap of rays with cells

Unlike the ion transport model@6#, the information
needed for the probabilities is not explicitly stored, but rath
is computed as needed. The next cell being distributed
from cell ccg is found using an appropriate ordered triple
an integer offset. The ordered triple refers toc̄, the next
closest fine regular mesh element to the origin. The fractio
overlap ofc̄ and the ray, and the average distancec̄ extend-
ing along the ray are approximated once. The propagatio

FIG. 4. A 2D example of the manner in which arbitrary coar
mesh elements are redefined in terms of fine regular mesh elem
05670
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the particles is then performed by looping over all the ‘‘ce
ters of gravity’’ ccg , distributing particles to fine mesh ele
ments designated by

cdist5~ i cg1 ī , j cg1 j̄ , kcg1 k̄!, ~9!

where (i cg , j cg ,kcg) is the ordered triple of the distributing
nodeccg and (ī , j̄ ,k̄) is the integer offset belonging toc̄. The
generation of the integer offsets is described in the Appen

The fractional overlap is approximated as

f ~r i , j !55
DVdist

V r i , j

, r 2V r i , j
,3DAf inemesh,

Vdist

V r i , j

, r 2V r i , j
>3DAf inemesh,

~10!

whereV r i , j
is the solid angle subtended by the rayr i , j with

the origin of the ray located atccg , DVdist is the portion of
solid angleV r i , j

overlapped by cellcdist , Vdist is the solid

angle subtended by the faces ofcdist projected in the direc-
tion of r i , j , r is the distance betweenccg and cdist ,
DAf inemeshis the area of a face ofcdist , r 2V r i , j

is the area of

ray r i , j at cell cdist , and 3DAf inemeshis an overestimate for
the area of the three possible exposed faces ofcdist . ‘‘Ex-
posed to the ray’’ refers to the faces of the cell the partic
entercdist through, when traveling alongr i , j . At large dis-
tances, the approximation of the fractional overlap is ba
on whether or not the center ofcdist lies on the interior of a
given rayr i , j .

The average distance a cell extends along a ray is c
puted using

D~c,r i , j !5
Vdist

(
k

Jr i , j
„Af inemesh~k!…

, ~11!

whereVdist is the volume of cellcdist , Jr i , j
„Af inemesh(k)… is

the area of the face of thekth face ofcdist projected in the
direction of rayr i , j , and the sum overk represents the sum
over the faces ofcdist ‘‘visible’’ to the distributing nodeccg
or cbcg when looking in the direction ofr i , j .

3. Overlap of rays with wall cells

When a propagating ray strikes a cellcb on the boundary,
the fractional overlap of the ray with the wall cell is com
puted as above. This fractional overlap is the fraction
particles in the ray that has a collision with the wall cellcb .
After a ray strikes a wall cell, the area of the ray needs to
adjusted, so that the fractional overlap of the ray with oth
interior cellscdist at greater radii thancb is not underesti-
mated, because the portion of the ray strikingcb is no longer
propagating particles~see Fig. 5!. For a simply connected
region, without inclusions, the solid angle of the ray is r
duced by a fractional amountf (dV). It is necessary to store
theV r i , j

of each distributingccg since the rays from eachccg

encounter the boundary cellscb in a different order, hence

ts.
8-5
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A. J. CHRISTLIEB, AND W. N. G. HITCHON PHYSICAL REVIEW E65 056708
the V r i , j
for eachccg will require different fractional adjust-

ments. An overlap rule can be used, see Ref.@21#, to find the
fraction of the wall cell that is in the ray or vice versa. Th
simplest such rule might be to find the range inF andQ of
the ray, from (F/Q)min

ray to (F/Q)max
ray ; and similarly

(F/Q)min
cell and (F/Q)max

cell . Fmin/max
cell andQmin/max

cell are found
from the coordinates of the corners of the facet. The are
a ‘‘rectangle’’ with these values defining its faces is fou
and compared to the actual area of the facet. The area o
rectangle is greater by a ratiof area . The dimensions inQ
andF of the cell are temporarily reduced by a factorAf area,
keeping the central value the same, thus redefiningFmin/max

cell

and Qmin/max
cell of the face. After ‘‘correcting’’Fmin/max

cell , we
find which of the minima is greater and which of the maxim
is smaller, to find the range of overlap inF. We repeat this
for Q. The solid angle of the overlap is estimated using th
two overlaps.

In a domain with inclusions, interiors of rays may strik
the boundary before the edge of the rays strike the bound
thus making the ray a complicated structure. Subdividing
ray into subrays can handle complicated ray structures,
this is memory intensive. An alternative to subdividing t
ray is to subdivide the simulation region into simply co
nected regions without inclusions, known as convex hu
The boundaries between convex hulls would be transpa
walls. Phase space information about particles striking
boundaries between convex hulls would be stored until
completion of the current simulation step. At the start of t
next step, these particles would be relaunched into the
convex hull. Subdividing into convex hulls eliminates th
necessity for complicated ray subdivision routines and o
requires a minimal design upgrade to the propagating st
ture presented here. For the current simulation of heat tr

FIG. 5. Depiction of the necessity of reducingdV. The speckled
portion of the ray has the shortest distance to the wall so that
portion of the ray strikes the wall first. After the speckled portion
the ray has struck the wall, the solid angledV of the ray is reduced
by the amount of the speckled portion.
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fer between parallel plates, we only need a simple metho
adjustingV r i , j

when a ray strikes a wall.f (dV) is used to

reduceV r i , j
. Becausef (dV) is a rough approximation,V r i , j

may not be equal to zero at the end of a step. IfV r i , j
is less

than zero after adjustment byf (dV) ~during the step!, all
remaining particles inr i , j are placed in the current wall ce
andV r i , j

is set to zero. IfV r i , j
of a ray is greater than zero a

the end of the step, the small number of remaining partic
is simply distributed to the boundary of the simulation d
main, thereby conserving mass during the ballistic operat

4. Mean free path

In the current model,l(c,E8) can be determined for eac
spatial cell from the cross-section and the local particle d
tribution. However, we have made the simplifying assum
tions that the gas is monatomic and has a constant colli
frequency,n, andl is

l~E8!5
uv~E8!u

n
. ~12!

n is

n5
uv~Ẽ!u

l~Ẽ!
, ~13!

where Ẽ is the average energy.Ẽ5 3
2 kB(Thot1Tcold)/2

wherekB is Boltzmann’s constant,T is temperature and the
subscripts hot and cold refer to the hot and cold plat
Choosingl(Ẽ) to be equal toKnL, whereKn is the Knudsen
number andL is the characteristic length, yields

l5S ~KnL !2T

~Thot1Tcold!/2
D 1/2

, ~14!

whereT is the ‘‘temperature’’ of the species colliding in ce
c.

In the next section we discuss the collision operators
implementation of boundary conditions.

C. Collision operator: Constructing R„c,E…

In this section, a discussion of the collision operatorTcol
is given.Tcol redistributes particles on the mesh and alo
the boundary in energy while conserving momentum
particle-particle collisions. Application ofTcol to R(c,E8)
~constructed during the ballistic move! gives R(c,E). We
now give an overview ofTcol , followed by the implementa-
tion of energy conservation for particles, momentum cons
vation for particles on the interior of the mesh, and final
implementation of the boundary conditions.

In this work the collisions have been described using t
different models. In the first, particles that undergo a co
sion in cell c are put back on the phase space mesh at
average energy of the particles that collided in the cell dur
the current simulation step. Particles that strike the wall a
undergo a diffuse interaction are placed back on the ph
space mesh at the energy of the wall. Momentum is c

is
f

8-6
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served using the angular distributionf (u). The angular dis-
tribution f (Q) provides the correct weighting for particle
that undergo a diffuse interaction with the wall.

In the second collision operator the model used for
interior of the simulation domain is the BGK model, which

d f

dt U
coll ision

5nn~c! f 0~E! f ~u!2n f ~rW,vW !, ~15!

and the distribution of particles coming off the wall is give
by

f uwall5azAE f0~E! f ~Q!1~12a! f ~rW,vW !, ~16!

where f 0(E) is the Maxwellian distribution function,a of
Eq. ~16! is the bulk wall accommodation factor, andz is a
normalization factor.f (u) and f (Q) carry directional infor-
mation as described below. The additional factor ofAE in
Eq. ~16!, is to account for the fact that the flux of particle
coming off the wall at energyE should be the same as
there were an infinite volume behind the wall with a Ma
wellian distribution of density—the flux at energyE is that
density weighted with velocityA2E/m f(Q).

Both the monoenergeticTcol and theTcol defined using
Eq. ~15! conserve energy and momentum, locally on av
age, i.e., the average of the energy and momentum of
particles in mesh cellc after redistribution by collisions is
forced to equal the average energy and momentum of
particles which collide in cellc before they are redistributed
We find the energy and momentum for cellc in four steps:
~1! Determine the average energyEav of the particles that
collide in cellc; ~2! determine the average momentum of t
particles that collide in cellc; ~3! redistribute the particles in
energy, within cellc, based onEav ; ~4! assign an angula
distribution to the particles of each energy bin,Ei , of the
mesh, so that the momentum is conserved for particles
collide in the cellc. For particles that collide with a bound
ary, the particles either spectrally reflect or undergo a diff
interaction with the boundary.

The redistribution of particles in energy, on the interior
the mesh, is done according to

F̃ i5
Fi

(
i

Fi

, ~17!

whereF̃ i is the fraction of particles placed in energy binEi
andFi is given for the monoenergeticTcol by

Fi5H 0, unu.DEi

~Ei 112Eav!, unu,DEi and n,DEi

~Eav2Ei 21!, unu,DEi and n.DEi ,

~18!

wheren5(Ei2Eav). For the BGKTcol, Fi is

Fi5AEie
2Ei /EavDEi , ~19!

whereEi is the center of the energy bin,Eav is as above, and
DEi is the width of the energy binEi . Eav is given by
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Eav5

(
i

Nc~Ei !Ei

(
i

Nc~Ei !

, ~20!

which is computed beforeFi . Because the average energ
computed usingẼav5( i F̃ iEi may not equalEav , we check
that Eav equalsẼav and adjustF̃ i , if necessary.

Conservation of momentum is achieved by choosing
angular distribution for the particles that collided in cellc,
which yields the same mean velocity that they had bef
they collided. Since details of the differential collision cro
section are usually not known, we choose a simple ang
distribution. The elastic collision operator developed in@20#
is employed here, with adjustments, to ensure momen
conservation. Particles are relaunched with an angular di
bution

f ~u!5~11avcosu!, ~21!

whereu is measured from the direction of the mean veloc
and whereav is chosen to obtain the required velocity. Re
erence@20# provides details, including how large values
the mean velocity are handled. Other angular distributio
could be employed instead, for instance, to allow for an
curate differential cross section.

Boundary conditions are imposed in a straightforwa
manner. For example, if a given surface has a porosity
x%, x% of the particles striking a givencb are subtracted
from the total number of particles strikingcb . However, very
little is known about how particles interact with a surfac
Reflecting particles are believed to undergo diffuse or sp
tral reflection. Particles having a diffuse reflection off a s
face come away from the surface isotropically and ac
mated to the temperature of the wall. The angu
distribution function that leads to uniform density for pa
ticles coming off a surface is

f ~Q!5cosQ, ~22!

whereQ is the angle between the outgoing particle’s dire
tion and the normal to the surface@22#. In addition, particles
undergoing a diffuse interaction with the wall are redistr
uted in energy according to Eq.~17!, whereEav in Eq. ~18!
or ~19! is the mean energy of the particles at the tempera
of the wall. When Eq.~19! is used for the wall, an additiona
factor ofAEi must be included to make it consistent with E
~16!. Spectrally reflected particles are perfectly reflected, i
the angle of incidence equals the angle of reflection. Parti
that are spectrally reflected do not undergo a change in
ergy after a collision with a surface. Spectrally reflected p
ticles are placed in the outgoing ray associated with the an
of reflection and are binned with the same energy the p
ticles had prior to collision with the surface.
8-7
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D. Simulation accuracy and speed

In the current implementation of this kinetic metho
speed, accuracy, and memory usage are somewhat inde
dent. In this section we give a qualitative discussion of
numerical aspects of this method.

Memory usage is primarily tied to storage of particles.
order to accurately model the distribution function, ea
coarse mesh element of physical space must have a s
energy bins, and each energy bin must have a set of d
tional (F,Q) ray bins. In addition, a full set of energy bin
as well as a partial set of (F,Q) bins is necessary for th
walls. Storing this information leads to the majority of th
storage overhead associated with the current form of
method.

The number of ray bins associated with the mesh does
have much effect on the speed of the method. The overla
all the offset fine mesh elements with the propagating ray
computed once at the beginning of the step and is used
distribution from allccg andcbcg to the fine mesh element
in order of closeness. The time associated with each ste
primarily due to the number of fine and coarse mesh e
ments, because each coarse element will usually ‘‘hit’’ ea
fine element once, regardless of the number of rays
ployed. In addition, the time it takes to compute the over
is very small compared to the time it takes to loop over a
distribute to all of the fine mesh elements from the coa
mesh elements. If the number of fine mesh elements goe
by a factor of 10, the time it takes per step also goes up
approximately a factor of 10. Increasing the number
coarse mesh elements has the same effect.

Errors are introduced into the computation through
approximation to the fractional overlap in Eq.~10!. In addi-
tion, errors are introduced with the assumptions that parti
are uniformly distributed in a given ray, and that particl
having collided in a given coarse cell can be redistribu
from ccg of the coarse cell. Since the time it takes to comp
the overlap of the offset fine mesh element to a distribut
ray is very small compared with the time it takes to distribu
particles, one effective way to improve the accuracy of
method is to generate better approximations than Eq.~10!.
Also, if one can assume a constant collision frequency
mean free path, one can eliminate the propagating rays f
the method by using Eq.~21! to determine the number o
particles that should collide in a given fine mesh elem
instead of using Eq.~21! to determine the number of pa
ticles in each ray. However, in the event that the differen
cross section is well understood, propagating rays can o
an advantage over Eq.~21!, in that we can exactly specify
the angular distribution of particles. The error in approxim
tion of the distribution fromccg may be reduced either b
increasing the number of coarse mesh elements or by d
mining an analytic model to compensate for the error in
offset. Increasing the number of coarse mesh cells, by
creasing the maximum radius of a coarse cell, will incre
the accuracy by reducing the possible displacement a par
undergoes when relaunched after a collision, i.e., the dista
between where the particle actually collided and the poin
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redistribution (ccg) will be reduced if the maximum radius o
the coarse cell is reduced.

The TPM is a 6D simulation with an element of pha
space represented by the ordered set (x,y,z,E,F,Q). As dis-
cussed earlier, the heat transport problem of Sec. II is use
the verification of the TPM. In the results presented in t
following section, the coarse mesh is 737321, i.e., there
are sevenx subdivisions, seveny subdivisions, and 21z sub-
divisions. In addition there are 2@73712(7321)# distrib-
uting wall bins. For each coarse distributing bin there are
energy bins and 14F bins and 24Q bins, bringing the total
number of bins to

Nbins5~737321!~21314324!1$2@73712~7321!#%

3~21314324!,

which is 1.2'3107 bins. If this computation was don
without the rays, this number would be reduced to arou
30 000 bins. There are about 10 000 fine mesh element
the current simulation. The simulation was carried out o
400 MHz Pentium II, processor with 512 MB of RAM~ran-
dom access memory!. The number ofz,E, F, and Q bins
represents a lower limit to remove any mesh dependen
when Eqs.~15! and~16! were used as the collision operato

The simulation is considered converged when the s
over the mesh of the difference in the density of two co
secutive steps was less than 0.1%. The monoenergetic
exhibited faster convergence than its BGK counterpart. T
monoenergetic model took around 2 min per step and
long mean-free-path case converged in about eight st
whereas the short mean-free-path case converged in abo
steps. In the BGK model, a step of the simulation w
'4 min and the long mean-free-path simulations conver
in about 30 steps while the short mean-free-path simulati
took upwards of 80 steps to converge. To converge to
accuracy took far less time, however.

Both simulations are started by placing the particles u
formly on the mesh. The particles are assumed isotropic
are distributed according to Eq.~17!, with Eav set to the
average energy of the particles at the temperature of the
plate. This is a poor guess at the final distribution of t
particles. The long time to converge can be partially attr
uted to the poor initial condition. The additional time r
quired for the BGK model to converge is related to the tim
it takes to heat the significant number of cold particle
which are colder than the cold plate@added everywhere to
the simulation domain by the use of Eq.~17! in initializing
the simulation#.

In all results presented, the density profiles of the TP
exhibited peaking in the corners of the simulation doma
Peaking can be reduced by increasing the number of w
cells, which decreases the error introduced by using an
the fly’’ approximate overlap rule for the rays with the wa
cells. Since the geometry is the same as seen by each ray
travels in the same direction, it is computationally feasible
calculate overlaps accurately for each such ray. That in
mation is used a very large number of times, so the cos
computing it is small compared to the computational load
8-8
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THREE-DIMENSIONAL SOLUTIONS OF THE . . . PHYSICAL REVIEW E 65 056708
the overall task. Such accurate calculations are done by
viding each surface of a cell into a large number of sma
surfaces. This subdivision of the facets increases the a
racy. However, as the radius of the ray increases, the erro
computing the fractional overlap, in Eq.~10!, decreases like
1/r 2. At some point the increase in accuracy is not warran
since the errors obtained using small facets at small r
have already limited the overall accuracy of the meth
When this point is reached, one can revert to using the en
face in computing the fractional overlaps. The increased
curacy greatly reduces peaking in the corners, from65.0%
to less than61.0%. More accurate overlap rules are d
cussed in@5,6#, but even this rule works quite well in th
examples given here.

Finite-difference-type approximations tend to und
specify some details of physical problems—and the spe
cation of the surface we employ is an example of this. In
corners, not only are adjacent source points closer toge
than points on a flat surface, but there is some ambig
about the shape of the surface in the corner between
points. If we imagine the corner between the source point
being filled with a single facet at 45° to the adjacent fac
then the angular distribution leaving the corner would
directed significantly more away from the corner than if w
use two facets at 90°. To allow for a more realistic corn
shape, for the given resolution provided by the source poi
we have considered tilting the normals of the facets adjac
to the corner slightly away from the corner. We chose a va
of 22.5° as a physically based average value. This ‘‘corr
tion’’ does reduce peaking in the corners, but it does
appear to eliminate it.

The distributing nodeccg of the coarse mesh needs to
close to the actual center of gravity of the coarse mesh
ment. After a collision, particles are relaunched fromccg .
For the uniform mesh described above, an offset inccg ,
from the center of gravity, results in a preferred direction
motion, i.e., particles that collide in a given coarse cell w
have an additional offset in their location corresponding
the offset inccg . This additional offset resembles an im
posed drift velocity. This drift may result in particle distribu
tions being skewed in the direction of the offset. On a tru
arbitrary mesh, constructed of triangular elements, offset
this nature will cancel each other out.

IV. RESULTS AND VERIFICATION

In this section we discuss the results and verification
the TPM. We begin with an overview of the simulations th
were run for the verification process. Next, the results of
heat transport problem are presented and additional veri
tion of the TPM is provided by a comparison of the curre
results with the existing experimental data and previous
merical work.

A. Verification

Verification of the TPM consisted of five simulation
with the fifth being the comparison between the model a
the experimental data gathered by Teagan and Springer@11#
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for the heat flow between two parallel plates at vario
Knudsen numbers. The first four sets of simulations of
verification process addressed the issue of the uniformity
the density profile of neutral particles generated by the T
under the following conditions:

~1! The temperature of the simulation domain is a sin
value, particles undergo isotropic collisions, and the Knu
sen number of the simulation region is assumed small.

~2! As in ~1! except that the Knudsen number of the sim
lation region is assumed large.

FIG. 6. Density vs position for both the BGK and monoene
getic collision operator. Density is normalized using the density
the center,n0, between the two plates. Position is normalized us
the distance between the plates. The BGK model is represente
dashed lines, while the monoenergetic model is represented
solid lines.

FIG. 7. Density and temperature vs position for all Knuds
numbers using the BGK collision operator.~a! Density profile and
~b! temperature vs position. In both plots, thez axis value is nor-
malized using the value at the midpoint between the plates.
8-9
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FIG. 8. Density vs position using
the BGK collision operator. Density is
normalized using the density at the ce
ter,n0, between the two plates. Positio
is normalized using the distance be
tween the plates. In addition, this figur
includes the experimental data o
Teagan and Springer as well as the n
merical solutions generated by Ohwad
for the nonlinear Boltzmann equatio
solver and the nonlinear BGK mode
~a! Kn50.7194, ~b! Kn50.2994, ~c!
Kn50.1942, ~d! Kn50.1395, and~e!
Kn50.0658.
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~3! As in ~2! with the additional requirement that particle
are started at a cold temperature compared to the temper
of the walls.

~4! As in ~3! but the simulation includes momentum co
servation.

All of the tests were started with a point distribution
particles, that is, all particles of the simulation were placed
a single initial cell. The verification was performed on
mesh similar to those of Fig. 2.

The tests of uniformity that were done first provide
rather stringent test of this type of simulation. If the partic
are not launched isotropically, or various other problems
cur, the density of particles will not be uniform. The dens
was found to be uniform to quite a high accuracy, given
rather coarse mesh that was employed.

In a second type of test, the thermalization of partic
was examined by starting the particles at 160 K with
walls at 260 K. Within four steps the distribution was with
5% of the wall temperature.

The final preliminary test looked into the use of th
momentum-conserving collision operator. Isotropy was ag
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achieved using the momentum-conserving collision opera
In the four cases presented above, the TPM generated

expected solutions. The TPM was next applied to the h
transport problem discussed in Sec. II. The results are
sented in the following section.

B. Results

In this section we discuss the results of the TPM, appl
to the heat transport problem, and compare these resul
experiments and other simulation results. Figures 6–9 sh
the TPM results. In addition, Fig. 8 includes the experimen
results of Teagan and Springer and the simulation result
Ohwada generated with the nonlinear Boltzmann equa
solver and with the nonlinear BGK model. The nonline
Boltzmann equation solver solutions were generated usin
large integration table in combination with standard fini
difference methods in order to determine the solution to
mixed integro-differential equation. The nonlinear BGK s
lutions employed finite-difference methods to solve the BG
model. Figure 9 includes the experimental results of Tea
8-10
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THREE-DIMENSIONAL SOLUTIONS OF THE . . . PHYSICAL REVIEW E 65 056708
and Springer and the results generated with the nonlin
Boltzmann equation solver but does not include the non
ear BGK solutions, because the results of the nonlinear B
model did not significantly differ from those of the nonline
Boltzmann equation solver. However, Fig. 9 does include
results of Huang and Hwang, generated using the metho
discrete ordinates applied to the BGK model.

The plots of density vs position~Figs. 6 and 8! essentially
demonstrate that the simulations we have chosen to com
all agree with experiment and with each other at the low
Knudsen numbers. This is to be expected, since the di
ences in collision operators become less significant when
collisions are very frequent—all the models give rise to
Maxwellian distribution. As the Knudsen number increas
there is some divergence between models and experim
The models continue to agree with each other well, provid
they employ the same collision operator. A collision opera
that results in a full Maxwellian distribution for the scatter
particles actually does less well in reproducing experim
than some other forms of the collision operator. This is t
both for the two versions of the TPM shown here~comparing
Figs. 6 and 8! as well as for different simulation schemes.
is interesting to note that the TPM using the monoenerg
collision operator encompasses the solutions generated u
the BGK model, underscoring the sensitivity of the soluti
to the collision operator employed. We emphasize that
present simulation is fully 3D in space and velocity, where
those we compare to are 1D in space.

Figure 7 shows density and temperature versus posit
for different Knudsen numbers. The temperature does
reach that of the plates, as we go to a long mean-free-p
This is to be expected—at infinite mean-free-path the te
perature would not vary with position. The density variati
shows the inverse trend (p5nkBT holds to reasonable accu
racy!, so the density varies less, with position, at long me
free-path. In addition, Fig. 7~a! shows an asymmetry in th
density profile that was not seen in the experiment but
been observed in the solutions generated using the nonli
Boltzmann equation solver. These asymmetries are large
the solutions generated with the TPM than those observe
Ohwada. The increase may be due to the particular collis
operator ~and its implementation!. Ohwada went to some
lengths to resolve discrepancies between the experime
data and the theoretical solutions, and being unable to do
he argued that the experimental results may be incorrect@16#.

Figure 9 shows the heat flux, normalized to the infin
mean-free-path value, and also expressed normalized to
density of particles. While this point is not stated clearly
the various papers, some plot the total heat flux and so
plot the heat flux per particle. The normalization to t
infinite-l case makes the comparison less clear, but
agreement is generally good. An improved collision opera
might rectify the discrepancies that arise.

Overall, the TPM appears to perform well in this simp
test case, giving support to the contention that it will
appropriate in complex 3D geometries. A more accurate
lision operator would appear to be the remedy for the mod
discrepancies that are observed.
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V. CONCLUDING REMARKS

The transport model presented has extended the trans
probability matrix method~method of propagators! to arbi-
trary meshes in three spatial dimensions, allowi
momentum-conserving collisions and keeping memory
quirements modest. The simulation was successfully app
to the problem of heat transfer between two parallel plate
different temperatures with a rare gas between them.
results of the kinetic model were in good agreement with
experimental data of Teagan and Springer@11#. Issues sur-
rounding generalizing the method as well as reducing
memory needs were discussed. Future work will involve
development of a convective scheme propagator for com
ing probabilities, the introduction of convex hulls, more a
curate methods for determining the fractional overlap of fi
mesh elements with propagating rays, and an investigatio
the advantages and tradeoffs of using a rayless method
addition, the application of this method to heat transfer a
flows in MEMS will be investigated. In summary, th
method performed very well in describing the behavior o
rare gas between two parallel plates.
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APPENDIX: RADIAL COUNTING ALGORITHM

An efficient radial counting algorithm has been develop
for the determination of the integer offsets, in order of i
creasing radius. Since the ordered triple (i , j ,k) lies on the
same radius as (6 i ,6 j ,6k), we only need to generate th
ordered triples in the first quadrant. A further simplifyin

FIG. 9. Heat flux vs inverse Knudsen number using the BG
collision operator. Heat flux has been normalized using the f
molecular flow value,QFM . Also included are the experimenta
data of Teagan and Springer, the numerical solutions generate
Ohwada for the nonlinear Boltzmann equation solver, and the
merical solution of Huang and Hwang generated by the metho
discrete ordinates applied to the BGK transport model.
8-11
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observation is that the ordered triples given by

~ î , ĵ ,k̂!Px5$~ i , j ,k!u i> j >k>0% ~A1!

are unique and permutations of (î , ĵ ,k̂) generate the ordere
triples of the first quadrant. Therefore, generation of the
dered triples by increasing the radius can be reduced to
problem of generating the elements of the setx in order of
increasing radius.

The algorithm that generates the ordered triples of sex
by increasing the radius can be described as~a 2D visualiza-
tion can be seen in Fig. 10! follows.

Let L be a set of ordered triples~initially empty!, L5$%.
Let o be an ordered triple such that

o5minr $pu pPL and r 5upu%.
Let l be an ordered triple,l 5( i , j ,k), where

i , j ,kP$0,1,2, . . . %.
Let m5( ĩ ,0,0), whereĩ P$1,2,3, . . . %.

FIG. 10. A 2D visualization of the slice of the first quadrant f
which the counting algorithm generates ordered triples in orde
increasing radius (i> j >0) for 2D.
s

e-

a

05670
r-
he

Let n5( i 8, j 8,0), wherei 8, j 8P$1,2,3, . . . % and i 8. j 8.
On the first iteration, setl 5(0,0,0).
~1! If l 5m,

~a! m5( ĩ 11,0,0).
~b! Appendm to L.
~2! If l 5n,
~a! n5( i 8, j 811,0).
~b! Appendn to L.

~3! Incrementl using one of the following rules.
~a! If i 5 j 5k, then l 5( i 11, j , k).
~b! If i . j 5k, then l 5( i , j 11,k).
~c! If i . j .k, then l 5( i , j , k11).

~4! Determineo of L.
~5! If u l u5uou, then

~a! Determine ifl PL.
~b! If l PL, then removel from L.

~6! If u l u.uou, then
~a! Determine ifl PL.
~b! If l not in L, then placel in L.
~c! Let l 5o.

At the end of an iteration of the counting algorithm,l is
the next smallest integer offset of the setx. Consider the two
ordered triples (7,1,0) and (5,5,0) with the same radiur
5A50. Although the counting algorithm will not store thes
two elements inL at the same time, they demonstrate t
potential of having more than one element in the setx with
the same radius. If there is more than one element inL with
the same radius, they are stored consecutively inL so that
they may be accessed as a group. After the next elem
elements of the setx has been determined, the unique p
mutations of the element/elements are generated. These
mutations are all ordered triples in the first quadrant with
same radius. Next, the ordered triples for the remain
seven quadrants are generated, giving a complete list of
ordered triples at the next largest radius.
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